2022-08-23 21:12:41 +02:00
|
|
|
package advmath
|
|
|
|
|
|
|
|
import (
|
|
|
|
"fmt"
|
|
|
|
"math"
|
|
|
|
)
|
|
|
|
|
|
|
|
type Vec2[N Real] struct {
|
|
|
|
x N
|
|
|
|
y N
|
|
|
|
}
|
|
|
|
|
|
|
|
func V2[N Real](x, y N) Vec[N, Vec2[N]] {
|
|
|
|
return Vec2[N]{x, y}
|
|
|
|
}
|
|
|
|
|
|
|
|
func (v Vec2[N]) X() N {
|
|
|
|
return v.x
|
|
|
|
}
|
|
|
|
|
|
|
|
func (v Vec2[N]) Y() N {
|
|
|
|
return v.y
|
|
|
|
}
|
|
|
|
|
|
|
|
func (v Vec2[N]) Z() N {
|
|
|
|
return 0
|
|
|
|
}
|
|
|
|
|
|
|
|
func (v Vec2[N]) W() N {
|
|
|
|
return 0
|
|
|
|
}
|
|
|
|
|
|
|
|
func (v Vec2[N]) Add(o Vec[N, Vec2[N]]) Vec[N, Vec2[N]] {
|
2022-08-23 21:48:46 +02:00
|
|
|
return Vec2[N]{v.X() + o.X(), v.Y() + o.Y()}
|
2022-08-23 21:12:41 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
func (v Vec2[N]) Sub(o Vec[N, Vec2[N]]) Vec[N, Vec2[N]] {
|
|
|
|
return Vec2[N]{v.X() - o.X(), v.Y() - o.Y()}
|
|
|
|
}
|
|
|
|
|
|
|
|
func (v Vec2[N]) Mul(o Vec[N, Vec2[N]]) Vec[N, Vec2[N]] {
|
|
|
|
return Vec2[N]{v.X() * o.X(), v.Y() * o.Y()}
|
|
|
|
}
|
|
|
|
|
|
|
|
func (v Vec2[N]) Div(o Vec[N, Vec2[N]]) Vec[N, Vec2[N]] {
|
|
|
|
return Vec2[N]{v.X() / o.X(), v.Y() / o.Y()}
|
|
|
|
}
|
|
|
|
|
|
|
|
func (v Vec2[N]) Len() N {
|
|
|
|
return N(math.Sqrt(float64(v.X()*v.X() + v.Y()*v.Y())))
|
|
|
|
}
|
|
|
|
|
|
|
|
func (v Vec2[N]) Norm() Vec[N, Vec2[N]] {
|
|
|
|
l := v.Len()
|
|
|
|
return Vec2[N]{v.X() / l, v.Y() / l}
|
|
|
|
}
|
|
|
|
|
|
|
|
func (v Vec2[N]) Dot(o Vec[N, Vec2[N]]) N {
|
|
|
|
return N(v.X()*o.X() + v.Y()*o.Y())
|
|
|
|
}
|
|
|
|
|
|
|
|
func (v Vec2[N]) Lerp(o Vec[N, Vec2[N]], t N) Vec[N, Vec2[N]] {
|
|
|
|
t1 := 1 - t
|
|
|
|
return v.Mul(V2(t1, t1)).Add(o.Mul(V2(t, t)))
|
|
|
|
}
|
|
|
|
|
|
|
|
func (v Vec2[N]) String() string {
|
|
|
|
const decimals = 100000
|
|
|
|
return fmt.Sprintf("(%g | %g)", math.Round(float64(v.X())*decimals)/decimals, math.Round(float64(v.Y())*decimals)/decimals)
|
|
|
|
}
|
|
|
|
|
|
|
|
func (v Vec2[N]) StringPrecise() string {
|
|
|
|
return fmt.Sprintf("(%f | %f)", float64(v.X()), float64(v.Y()))
|
|
|
|
}
|