advmath/vec.go

46 lines
1.5 KiB
Go
Raw Normal View History

2022-08-23 21:12:41 +02:00
package advmath
// VecConst represents any vector of a given spacial dimension
// N is the number space of the vectors individual units
type VecConst[N Real] interface {
Vec2[N] | Vec3[N] | Vec4[N]
}
// Vec represents any vector in a given spacial dimension (up to 4d)
// N is the number space of the vectors individual units
// V is the vector dimension (one of Vec2, Vec3, Vec4)
type Vec[N Real, V VecConst[N]] interface {
X() N
Y() N
Z() N
W() N
// Add returns a new vector which represents the sum of this vector and o
Add(o Vec[N, V]) Vec[N, V]
// Add returns a new vector which represents the difference of this vector and o
Sub(o Vec[N, V]) Vec[N, V]
// Add returns a new vector which represents the multiplication of this vector and o
Mul(o Vec[N, V]) Vec[N, V]
// Add returns a new vector which represents the division of this vector and o
Div(o Vec[N, V]) Vec[N, V]
// Len returns the length of this vector
Len() N
// Norm returns a new vector of length 1 pointing in the same direction
Norm() Vec[N, V]
// Dot returns the dot product of this vector and o
Dot(o Vec[N, V]) N
// Lerp returns the vector inbetween this vector and o.
// t should be between [0, 1] (both inclusive) and determines where the returning vector should be between these vectors.
Lerp(o Vec[N, V], t N) Vec[N, V]
StringPrecise() string
String() string
}
var _ Vec[int, Vec2[int]] = &Vec2[int]{}
var _ Vec[int, Vec3[int]] = &Vec3[int]{}
var _ Vec[int, Vec4[int]] = &Vec4[int]{}