vectors implemented (up to 4d)

This commit is contained in:
Timon Ringwald 2022-08-23 21:12:41 +02:00
commit 0166ccb791
7 changed files with 301 additions and 0 deletions

7
aliases.go Normal file
View File

@ -0,0 +1,7 @@
package advmath
type Vec3f = Vec3[float64]
type Vec2f = Vec2[float64]
type Vec3i = Vec3[int]
type Vec2i = Vec2[int]

17
constraints.go Normal file
View File

@ -0,0 +1,17 @@
package advmath
type Complex interface {
~complex64 | ~complex128 | Real
}
type Real interface {
~float32 | ~float64 | Natural
}
type Natural interface {
~uint | ~uint8 | ~uint16 | ~uint32 | ~uint64 | Integer
}
type Integer interface {
~int | ~int8 | ~int16 | ~int32 | ~int64
}

3
go.mod Normal file
View File

@ -0,0 +1,3 @@
module git.milar.in/milarin/advmath
go 1.18

45
vec.go Normal file
View File

@ -0,0 +1,45 @@
package advmath
// VecConst represents any vector of a given spacial dimension
// N is the number space of the vectors individual units
type VecConst[N Real] interface {
Vec2[N] | Vec3[N] | Vec4[N]
}
// Vec represents any vector in a given spacial dimension (up to 4d)
// N is the number space of the vectors individual units
// V is the vector dimension (one of Vec2, Vec3, Vec4)
type Vec[N Real, V VecConst[N]] interface {
X() N
Y() N
Z() N
W() N
// Add returns a new vector which represents the sum of this vector and o
Add(o Vec[N, V]) Vec[N, V]
// Add returns a new vector which represents the difference of this vector and o
Sub(o Vec[N, V]) Vec[N, V]
// Add returns a new vector which represents the multiplication of this vector and o
Mul(o Vec[N, V]) Vec[N, V]
// Add returns a new vector which represents the division of this vector and o
Div(o Vec[N, V]) Vec[N, V]
// Len returns the length of this vector
Len() N
// Norm returns a new vector of length 1 pointing in the same direction
Norm() Vec[N, V]
// Dot returns the dot product of this vector and o
Dot(o Vec[N, V]) N
// Lerp returns the vector inbetween this vector and o.
// t should be between [0, 1] (both inclusive) and determines where the returning vector should be between these vectors.
Lerp(o Vec[N, V], t N) Vec[N, V]
StringPrecise() string
String() string
}
var _ Vec[int, Vec2[int]] = &Vec2[int]{}
var _ Vec[int, Vec3[int]] = &Vec3[int]{}
var _ Vec[int, Vec4[int]] = &Vec4[int]{}

74
vec2.go Normal file
View File

@ -0,0 +1,74 @@
package advmath
import (
"fmt"
"math"
)
type Vec2[N Real] struct {
x N
y N
}
func V2[N Real](x, y N) Vec[N, Vec2[N]] {
return Vec2[N]{x, y}
}
func (v Vec2[N]) X() N {
return v.x
}
func (v Vec2[N]) Y() N {
return v.y
}
func (v Vec2[N]) Z() N {
return 0
}
func (v Vec2[N]) W() N {
return 0
}
func (v Vec2[N]) Add(o Vec[N, Vec2[N]]) Vec[N, Vec2[N]] {
return Vec2[N]{v.X() + o.X(), v.Y()}
}
func (v Vec2[N]) Sub(o Vec[N, Vec2[N]]) Vec[N, Vec2[N]] {
return Vec2[N]{v.X() - o.X(), v.Y() - o.Y()}
}
func (v Vec2[N]) Mul(o Vec[N, Vec2[N]]) Vec[N, Vec2[N]] {
return Vec2[N]{v.X() * o.X(), v.Y() * o.Y()}
}
func (v Vec2[N]) Div(o Vec[N, Vec2[N]]) Vec[N, Vec2[N]] {
return Vec2[N]{v.X() / o.X(), v.Y() / o.Y()}
}
func (v Vec2[N]) Len() N {
return N(math.Sqrt(float64(v.X()*v.X() + v.Y()*v.Y())))
}
func (v Vec2[N]) Norm() Vec[N, Vec2[N]] {
l := v.Len()
return Vec2[N]{v.X() / l, v.Y() / l}
}
func (v Vec2[N]) Dot(o Vec[N, Vec2[N]]) N {
return N(v.X()*o.X() + v.Y()*o.Y())
}
func (v Vec2[N]) Lerp(o Vec[N, Vec2[N]], t N) Vec[N, Vec2[N]] {
t1 := 1 - t
return v.Mul(V2(t1, t1)).Add(o.Mul(V2(t, t)))
}
func (v Vec2[N]) String() string {
const decimals = 100000
return fmt.Sprintf("(%g | %g)", math.Round(float64(v.X())*decimals)/decimals, math.Round(float64(v.Y())*decimals)/decimals)
}
func (v Vec2[N]) StringPrecise() string {
return fmt.Sprintf("(%f | %f)", float64(v.X()), float64(v.Y()))
}

79
vec3.go Normal file
View File

@ -0,0 +1,79 @@
package advmath
import (
"fmt"
"math"
)
type Vec3[N Real] struct {
x N
y N
z N
}
func V3[N Real](x, y, z N) Vec3[N] {
return Vec3[N]{x, y, z}
}
func (v Vec3[N]) X() N {
return v.x
}
func (v Vec3[N]) Y() N {
return v.y
}
func (v Vec3[N]) Z() N {
return v.z
}
func (v Vec3[N]) W() N {
return 0
}
func (v Vec3[N]) Add(o Vec[N, Vec3[N]]) Vec[N, Vec3[N]] {
return Vec3[N]{v.X() + o.X(), v.Y() + o.Y(), v.Z() + o.Z()}
}
func (v Vec3[N]) Sub(o Vec[N, Vec3[N]]) Vec[N, Vec3[N]] {
return Vec3[N]{v.X() - o.X(), v.Y() - o.Y(), v.Z() - o.Z()}
}
func (v Vec3[N]) Mul(o Vec[N, Vec3[N]]) Vec[N, Vec3[N]] {
return Vec3[N]{v.X() * o.X(), v.Y() * o.Y(), v.Z() * o.Z()}
}
func (v Vec3[N]) Div(o Vec[N, Vec3[N]]) Vec[N, Vec3[N]] {
return Vec3[N]{v.X() / o.X(), v.Y() / o.Y(), v.Z() / o.Z()}
}
func (v Vec3[N]) Len() N {
return N(math.Sqrt(float64(v.X()*v.X() + v.Y()*v.Y() + v.Z()*v.Z())))
}
func (v Vec3[N]) Norm() Vec[N, Vec3[N]] {
l := v.Len()
return Vec3[N]{v.X() / l, v.Y() / l, v.Z() / l}
}
func (v Vec3[N]) Dot(o Vec[N, Vec3[N]]) N {
return N(v.X()*o.X() + v.Y()*o.Y() + v.Z()*o.Z())
}
func (v Vec3[N]) Cross(o Vec3[N]) Vec3[N] {
return Vec3[N]{v.Y()*o.Z() - v.Z()*o.Y(), v.Z()*o.X() - v.X()*o.Z(), v.X()*o.Y() - v.Y()*o.X()}
}
func (v Vec3[N]) Lerp(o Vec[N, Vec3[N]], t N) Vec[N, Vec3[N]] {
t1 := 1 - t
return v.Mul(V3(t1, t1, t1)).Add(o.Mul(V3(t, t, t)))
}
func (v Vec3[N]) String() string {
const decimals = 100000
return fmt.Sprintf("(%g | %g | %g)", math.Round(float64(v.X())*decimals)/decimals, math.Round(float64(v.Y())*decimals)/decimals, math.Round(float64(v.Z())*decimals)/decimals)
}
func (v Vec3[N]) StringPrecise() string {
return fmt.Sprintf("(%f | %f | %f)", float64(v.X()), float64(v.Y()), float64(v.Z()))
}

76
vec4.go Normal file
View File

@ -0,0 +1,76 @@
package advmath
import (
"fmt"
"math"
)
type Vec4[N Real] struct {
x N
y N
z N
w N
}
func V4[N Real](x, y, z, w N) Vec4[N] {
return Vec4[N]{x, y, z, w}
}
func (v Vec4[N]) X() N {
return v.x
}
func (v Vec4[N]) Y() N {
return v.y
}
func (v Vec4[N]) Z() N {
return v.z
}
func (v Vec4[N]) W() N {
return v.w
}
func (v Vec4[N]) Add(o Vec[N, Vec4[N]]) Vec[N, Vec4[N]] {
return Vec4[N]{v.X() + o.X(), v.Y() + o.Y(), v.Z() + o.Z(), v.W() + o.W()}
}
func (v Vec4[N]) Sub(o Vec[N, Vec4[N]]) Vec[N, Vec4[N]] {
return Vec4[N]{v.X() - o.X(), v.Y() - o.Y(), v.Z() - o.Z(), v.W() + o.W()}
}
func (v Vec4[N]) Mul(o Vec[N, Vec4[N]]) Vec[N, Vec4[N]] {
return Vec4[N]{v.X() * o.X(), v.Y() * o.Y(), v.Z() * o.Z(), v.W() + o.W()}
}
func (v Vec4[N]) Div(o Vec[N, Vec4[N]]) Vec[N, Vec4[N]] {
return Vec4[N]{v.X() / o.X(), v.Y() / o.Y(), v.Z() / o.Z(), v.W() + o.W()}
}
func (v Vec4[N]) Len() N {
return N(math.Sqrt(float64(v.X()*v.X() + v.Y()*v.Y() + v.Z()*v.Z() + v.W()*v.W())))
}
func (v Vec4[N]) Norm() Vec[N, Vec4[N]] {
l := v.Len()
return Vec4[N]{v.X() / l, v.Y() / l, v.Z() / l, v.W() / l}
}
func (v Vec4[N]) Dot(o Vec[N, Vec4[N]]) N {
return N(v.X()*o.X() + v.Y()*o.Y() + v.Z()*o.Z() + v.W()*o.W())
}
func (v Vec4[N]) Lerp(o Vec[N, Vec4[N]], t N) Vec[N, Vec4[N]] {
t1 := 1 - t
return v.Mul(V4(t1, t1, t1, t1)).Add(o.Mul(V4(t, t, t, t)))
}
func (v Vec4[N]) String() string {
const decimals = 100000
return fmt.Sprintf("(%g | %g | %g | %g)", math.Round(float64(v.X())*decimals)/decimals, math.Round(float64(v.Y())*decimals)/decimals, math.Round(float64(v.Z())*decimals)/decimals, math.Round(float64(v.W())*decimals)/decimals)
}
func (v Vec4[N]) StringPrecise() string {
return fmt.Sprintf("(%f | %f | %f | %f)", float64(v.X()), float64(v.Y()), float64(v.Z()), float64(v.W()))
}