// Package gg provides a simple API for rendering 2D graphics in pure Go. package gg import ( "image" "image/color" "image/draw" "image/png" "io" "math" "github.com/golang/freetype/raster" "golang.org/x/image/font" "golang.org/x/image/font/basicfont" ) type LineCap int const ( LineCapRound LineCap = iota LineCapButt LineCapSquare ) type LineJoin int const ( LineJoinRound LineJoin = iota LineJoinBevel ) type FillRule int const ( FillRuleWinding FillRule = iota FillRuleEvenOdd ) type Align int const ( AlignLeft Align = iota AlignCenter AlignRight ) type Context struct { width int height int im *image.RGBA mask *image.Alpha color color.Color strokePath raster.Path fillPath raster.Path start Point current Point hasCurrent bool dashes []float64 lineWidth float64 lineCap LineCap lineJoin LineJoin fillRule FillRule fontFace font.Face fontHeight float64 matrix Matrix stack []*Context } // NewContext creates a new image.RGBA with the specified width and height // and prepares a context for rendering onto that image. func NewContext(width, height int) *Context { return NewContextForRGBA(image.NewRGBA(image.Rect(0, 0, width, height))) } // NewContextForImage copies the specified image into a new image.RGBA // and prepares a context for rendering onto that image. func NewContextForImage(im image.Image) *Context { return NewContextForRGBA(imageToRGBA(im)) } // NewContextForRGBA prepares a context for rendering onto the specified image. // No copy is made. func NewContextForRGBA(im *image.RGBA) *Context { return &Context{ width: im.Bounds().Size().X, height: im.Bounds().Size().Y, im: im, color: color.Transparent, lineWidth: 1, fillRule: FillRuleWinding, fontFace: basicfont.Face7x13, fontHeight: 13, matrix: Identity(), } } // Image returns the image that has been drawn by this context. func (dc *Context) Image() image.Image { return dc.im } // Width returns the width of the image in pixels. func (dc *Context) Width() int { return dc.width } // Height returns the height of the image in pixels. func (dc *Context) Height() int { return dc.height } // SavePNG encodes the image as a PNG and writes it to disk. func (dc *Context) SavePNG(path string) error { return SavePNG(path, dc.im) } // EncodePNG encodes the image as a PNG and writes it to the provided io.Writer. func (dc *Context) EncodePNG(w io.Writer) error { return png.Encode(w, dc.im) } // SetDash sets the current dash pattern to use. Call with zero arguments to // disable dashes. The values specify the lengths of each dash, with // alternating on and off lengths. func (dc *Context) SetDash(dashes ...float64) { dc.dashes = dashes } func (dc *Context) SetLineWidth(lineWidth float64) { dc.lineWidth = lineWidth } func (dc *Context) SetLineCap(lineCap LineCap) { dc.lineCap = lineCap } func (dc *Context) SetLineCapRound() { dc.lineCap = LineCapRound } func (dc *Context) SetLineCapButt() { dc.lineCap = LineCapButt } func (dc *Context) SetLineCapSquare() { dc.lineCap = LineCapSquare } func (dc *Context) SetLineJoin(lineJoin LineJoin) { dc.lineJoin = lineJoin } func (dc *Context) SetLineJoinRound() { dc.lineJoin = LineJoinRound } func (dc *Context) SetLineJoinBevel() { dc.lineJoin = LineJoinBevel } func (dc *Context) SetFillRule(fillRule FillRule) { dc.fillRule = fillRule } func (dc *Context) SetFillRuleWinding() { dc.fillRule = FillRuleWinding } func (dc *Context) SetFillRuleEvenOdd() { dc.fillRule = FillRuleEvenOdd } // Color Setters // SetColor sets the current color. func (dc *Context) SetColor(c color.Color) { dc.color = c } // SetHexColor sets the current color using a hex string. The leading pound // sign (#) is optional. Both 3- and 6-digit variations are supported. 8 digits // may be provided to set the alpha value as well. func (dc *Context) SetHexColor(x string) { r, g, b, a := parseHexColor(x) dc.SetRGBA255(r, g, b, a) } // SetRGBA255 sets the current color. r, g, b, a values should be between 0 and // 255, inclusive. func (dc *Context) SetRGBA255(r, g, b, a int) { dc.color = color.NRGBA{uint8(r), uint8(g), uint8(b), uint8(a)} } // SetRGB255 sets the current color. r, g, b values should be between 0 and 255, // inclusive. Alpha will be set to 255 (fully opaque). func (dc *Context) SetRGB255(r, g, b int) { dc.SetRGBA255(r, g, b, 255) } // SetRGBA sets the current color. r, g, b, a values should be between 0 and 1, // inclusive. func (dc *Context) SetRGBA(r, g, b, a float64) { dc.color = color.NRGBA{ uint8(r * 255), uint8(g * 255), uint8(b * 255), uint8(a * 255), } } // SetRGB sets the current color. r, g, b values should be between 0 and 1, // inclusive. Alpha will be set to 1 (fully opaque). func (dc *Context) SetRGB(r, g, b float64) { dc.SetRGBA(r, g, b, 1) } // Path Manipulation // MoveTo starts a new subpath within the current path starting at the // specified point. func (dc *Context) MoveTo(x, y float64) { if dc.hasCurrent { dc.fillPath.Add1(dc.start.Fixed()) } x, y = dc.TransformPoint(x, y) p := Point{x, y} dc.strokePath.Start(p.Fixed()) dc.fillPath.Start(p.Fixed()) dc.start = p dc.current = p dc.hasCurrent = true } // LineTo adds a line segment to the current path starting at the current // point. If there is no current point, it is equivalent to MoveTo(x, y) func (dc *Context) LineTo(x, y float64) { if !dc.hasCurrent { dc.MoveTo(x, y) } else { x, y = dc.TransformPoint(x, y) p := Point{x, y} dc.strokePath.Add1(p.Fixed()) dc.fillPath.Add1(p.Fixed()) dc.current = p } } // QuadraticTo adds a quadratic bezier curve to the current path starting at // the current point. If there is no current point, it first performs // MoveTo(x1, y1) func (dc *Context) QuadraticTo(x1, y1, x2, y2 float64) { if !dc.hasCurrent { dc.MoveTo(x1, y1) } x1, y1 = dc.TransformPoint(x1, y1) x2, y2 = dc.TransformPoint(x2, y2) p1 := Point{x1, y1} p2 := Point{x2, y2} dc.strokePath.Add2(p1.Fixed(), p2.Fixed()) dc.fillPath.Add2(p1.Fixed(), p2.Fixed()) dc.current = p2 } // CubicTo adds a cubic bezier curve to the current path starting at the // current point. If there is no current point, it first performs // MoveTo(x1, y1). Because freetype/raster does not support cubic beziers, // this is emulated with many small line segments. func (dc *Context) CubicTo(x1, y1, x2, y2, x3, y3 float64) { if !dc.hasCurrent { dc.MoveTo(x1, y1) } x0, y0 := dc.current.X, dc.current.Y x1, y1 = dc.TransformPoint(x1, y1) x2, y2 = dc.TransformPoint(x2, y2) x3, y3 = dc.TransformPoint(x3, y3) points := CubicBezier(x0, y0, x1, y1, x2, y2, x3, y3) previous := dc.current.Fixed() for _, p := range points[1:] { f := p.Fixed() if f == previous { // TODO: this fixes some rendering issues but not all continue } previous = f dc.strokePath.Add1(f) dc.fillPath.Add1(f) dc.current = p } } // ClosePath adds a line segment from the current point to the beginning // of the current subpath. If there is no current point, this is a no-op. func (dc *Context) ClosePath() { if dc.hasCurrent { dc.strokePath.Add1(dc.start.Fixed()) dc.fillPath.Add1(dc.start.Fixed()) dc.current = dc.start } } // ClearPath clears the current path. There is no current point after this // operation. func (dc *Context) ClearPath() { dc.strokePath.Clear() dc.fillPath.Clear() dc.hasCurrent = false } // NewSubPath starts a new subpath within the current path. There is no current // point after this operation. func (dc *Context) NewSubPath() { if dc.hasCurrent { dc.fillPath.Add1(dc.start.Fixed()) } dc.hasCurrent = false } // Path Drawing func (dc *Context) capper() raster.Capper { switch dc.lineCap { case LineCapButt: return raster.ButtCapper case LineCapRound: return raster.RoundCapper case LineCapSquare: return raster.SquareCapper } return nil } func (dc *Context) joiner() raster.Joiner { switch dc.lineJoin { case LineJoinBevel: return raster.BevelJoiner case LineJoinRound: return raster.RoundJoiner } return nil } func (dc *Context) stroke(painter raster.Painter) { path := dc.strokePath if len(dc.dashes) > 0 { path = dashed(path, dc.dashes) } else { // TODO: this is a temporary workaround to remove tiny segments // that result in rendering issues path = rasterPath(flattenPath(path)) } r := raster.NewRasterizer(dc.width, dc.height) r.UseNonZeroWinding = true r.AddStroke(path, fix(dc.lineWidth), dc.capper(), dc.joiner()) r.Rasterize(painter) } func (dc *Context) fill(painter raster.Painter) { path := dc.fillPath if dc.hasCurrent { path = make(raster.Path, len(dc.fillPath)) copy(path, dc.fillPath) path.Add1(dc.start.Fixed()) } r := raster.NewRasterizer(dc.width, dc.height) r.UseNonZeroWinding = dc.fillRule == FillRuleWinding r.AddPath(path) r.Rasterize(painter) } // StrokePreserve strokes the current path with the current color, line width, // line cap, line join and dash settings. The path is preserved after this // operation. func (dc *Context) StrokePreserve() { if dc.mask == nil { painter := raster.NewRGBAPainter(dc.im) painter.SetColor(dc.color) dc.stroke(painter) } else { im := image.NewRGBA(image.Rect(0, 0, dc.width, dc.height)) painter := raster.NewRGBAPainter(im) painter.SetColor(dc.color) dc.stroke(painter) draw.DrawMask(dc.im, dc.im.Bounds(), im, image.ZP, dc.mask, image.ZP, draw.Over) } } // Stroke strokes the current path with the current color, line width, // line cap, line join and dash settings. The path is cleared after this // operation. func (dc *Context) Stroke() { dc.StrokePreserve() dc.ClearPath() } // FillPreserve fills the current path with the current color. Open subpaths // are implicity closed. The path is preserved after this operation. func (dc *Context) FillPreserve() { if dc.mask == nil { painter := raster.NewRGBAPainter(dc.im) painter.SetColor(dc.color) dc.fill(painter) } else { im := image.NewRGBA(image.Rect(0, 0, dc.width, dc.height)) painter := raster.NewRGBAPainter(im) painter.SetColor(dc.color) dc.fill(painter) draw.DrawMask(dc.im, dc.im.Bounds(), im, image.ZP, dc.mask, image.ZP, draw.Over) } } // Fill fills the current path with the current color. Open subpaths // are implicity closed. The path is cleared after this operation. func (dc *Context) Fill() { dc.FillPreserve() dc.ClearPath() } // ClipPreserve updates the clipping region by intersecting the current // clipping region with the current path as it would be filled by dc.Fill(). // The path is preserved after this operation. func (dc *Context) ClipPreserve() { clip := image.NewAlpha(image.Rect(0, 0, dc.width, dc.height)) painter := raster.NewAlphaOverPainter(clip) dc.fill(painter) if dc.mask == nil { dc.mask = clip } else { r := image.Rect(0, 0, dc.width, dc.height) mask := image.NewAlpha(r) draw.DrawMask(mask, r, clip, image.ZP, dc.mask, image.ZP, draw.Over) draw.DrawMask(mask, r, dc.mask, image.ZP, clip, image.ZP, draw.Over) dc.mask = mask } } // Clip updates the clipping region by intersecting the current // clipping region with the current path as it would be filled by dc.Fill(). // The path is cleared after this operation. func (dc *Context) Clip() { dc.ClipPreserve() dc.ClearPath() } // ResetClip clears the clipping region. func (dc *Context) ResetClip() { dc.mask = nil } // Convenient Drawing Functions // Clear fills the entire image with the current color. func (dc *Context) Clear() { src := image.NewUniform(dc.color) draw.Draw(dc.im, dc.im.Bounds(), src, image.ZP, draw.Src) } func (dc *Context) DrawLine(x1, y1, x2, y2 float64) { dc.MoveTo(x1, y1) dc.LineTo(x2, y2) } func (dc *Context) DrawRectangle(x, y, w, h float64) { dc.MoveTo(x, y) dc.LineTo(x+w, y) dc.LineTo(x+w, y+h) dc.LineTo(x, y+h) dc.LineTo(x, y) } func (dc *Context) DrawRoundedRectangle(x, y, w, h, r float64) { x0, x1, x2, x3 := x, x+r, x+w-r, x+w y0, y1, y2, y3 := y, y+r, y+h-r, y+h dc.MoveTo(x1, y0) dc.LineTo(x2, y0) dc.DrawArc(x2, y1, r, Radians(270), Radians(360)) dc.LineTo(x3, y2) dc.DrawArc(x2, y2, r, Radians(0), Radians(90)) dc.LineTo(x1, y3) dc.DrawArc(x1, y2, r, Radians(90), Radians(180)) dc.LineTo(x0, y1) dc.DrawArc(x1, y1, r, Radians(180), Radians(270)) } func (dc *Context) DrawEllipticalArc(x, y, rx, ry, angle1, angle2 float64) { const n = 16 for i := 0; i < n; i++ { p1 := float64(i+0) / n p2 := float64(i+1) / n a1 := angle1 + (angle2-angle1)*p1 a2 := angle1 + (angle2-angle1)*p2 x0 := x + rx*math.Cos(a1) y0 := y + ry*math.Sin(a1) x1 := x + rx*math.Cos(a1+(a2-a1)/2) y1 := y + ry*math.Sin(a1+(a2-a1)/2) x2 := x + rx*math.Cos(a2) y2 := y + ry*math.Sin(a2) cx := 2*x1 - x0/2 - x2/2 cy := 2*y1 - y0/2 - y2/2 if i == 0 { dc.MoveTo(x0, y0) } dc.QuadraticTo(cx, cy, x2, y2) } } func (dc *Context) DrawEllipse(x, y, rx, ry float64) { dc.DrawEllipticalArc(x, y, rx, ry, 0, 2*math.Pi) } func (dc *Context) DrawArc(x, y, r, angle1, angle2 float64) { dc.DrawEllipticalArc(x, y, r, r, angle1, angle2) } func (dc *Context) DrawCircle(x, y, r float64) { dc.DrawEllipticalArc(x, y, r, r, 0, 2*math.Pi) } func (dc *Context) DrawRegularPolygon(n int, x, y, r, rotation float64) { angle := 2 * math.Pi / float64(n) rotation -= math.Pi / 2 if n%2 == 0 { rotation += angle / 2 } dc.NewSubPath() for i := 0; i < n; i++ { a := rotation + angle*float64(i) dc.LineTo(x+r*math.Cos(a), y+r*math.Sin(a)) } dc.ClosePath() } // DrawImage draws the specified image at the specified point. // Currently, rotation and scaling transforms are not supported. func (dc *Context) DrawImage(im image.Image, x, y int) { dc.DrawImageAnchored(im, x, y, 0, 0) } // DrawImageAnchored draws the specified image at the specified anchor point. // The anchor point is x - w * ax, y - h * ay, where w, h is the size of the // image. Use ax=0.5, ay=0.5 to center the image at the specified point. func (dc *Context) DrawImageAnchored(im image.Image, x, y int, ax, ay float64) { s := im.Bounds().Size() x -= int(ax * float64(s.X)) y -= int(ay * float64(s.Y)) p := image.Pt(x, y) r := image.Rectangle{p, p.Add(s)} if dc.mask == nil { draw.Draw(dc.im, r, im, image.ZP, draw.Over) } else { draw.DrawMask(dc.im, r, im, image.ZP, dc.mask, p, draw.Over) } } // Text Functions func (dc *Context) SetFontFace(fontFace font.Face) { dc.fontFace = fontFace } func (dc *Context) LoadFontFace(path string, points float64) { if face, err := loadFontFace(path, points); err == nil { dc.fontFace = face dc.fontHeight = points * 72 / 96 } else { dc.fontFace = basicfont.Face7x13 dc.fontHeight = 13 } } func (dc *Context) drawString(im *image.RGBA, s string, x, y float64) { d := &font.Drawer{ Dst: im, Src: image.NewUniform(dc.color), Face: dc.fontFace, Dot: fixp(x, y), } d.DrawString(s) } // DrawString draws the specified text at the specified point. // Currently, rotation and scaling transforms are not supported. func (dc *Context) DrawString(s string, x, y float64) { dc.DrawStringAnchored(s, x, y, 0, 0) } // DrawStringAnchored draws the specified text at the specified anchor point. // The anchor point is x - w * ax, y - h * ay, where w, h is the size of the // text. Use ax=0.5, ay=0.5 to center the text at the specified point. func (dc *Context) DrawStringAnchored(s string, x, y, ax, ay float64) { w, h := dc.MeasureString(s) x -= ax * w y += ay * h x, y = dc.TransformPoint(x, y) if dc.mask == nil { dc.drawString(dc.im, s, x, y) } else { im := image.NewRGBA(image.Rect(0, 0, dc.width, dc.height)) dc.drawString(im, s, x, y) draw.DrawMask(dc.im, dc.im.Bounds(), im, image.ZP, dc.mask, image.ZP, draw.Over) } } // DrawStringWrapped word-wraps the specified string to the given max width // and then draws it at the specified anchor point using the given line // spacing and text alignment. func (dc *Context) DrawStringWrapped(s string, x, y, ax, ay, width, lineSpacing float64, align Align) { lines := dc.WordWrap(s, width) h := float64(len(lines)) * dc.fontHeight * lineSpacing h -= (lineSpacing - 1) * dc.fontHeight x -= ax * width y -= ay * h switch align { case AlignLeft: ax = 0 case AlignCenter: ax = 0.5 x += width / 2 case AlignRight: ax = 1 x += width } ay = 1 for _, line := range lines { dc.DrawStringAnchored(line, x, y, ax, ay) y += dc.fontHeight * lineSpacing } } // MeasureString returns the rendered width and height of the specified text // given the current font face. func (dc *Context) MeasureString(s string) (w, h float64) { d := &font.Drawer{ Face: dc.fontFace, } a := d.MeasureString(s) return float64(a >> 6), dc.fontHeight } // WordWrap wraps the specified string to the given max width and current // font face. func (dc *Context) WordWrap(s string, w float64) []string { return wordWrap(dc, s, w) } // Transformation Matrix Operations // Identity resets the current transformation matrix to the identity matrix. // This results in no translating, scaling, rotating, or shearing. func (dc *Context) Identity() { dc.matrix = Identity() } // Translate updates the current matrix with a translation. func (dc *Context) Translate(x, y float64) { dc.matrix = dc.matrix.Translate(x, y) } // Scale updates the current matrix with a scaling factor. // Scaling occurs about the origin. func (dc *Context) Scale(x, y float64) { dc.matrix = dc.matrix.Scale(x, y) } // ScaleAbout updates the current matrix with a scaling factor. // Scaling occurs about the specified point. func (dc *Context) ScaleAbout(sx, sy, x, y float64) { dc.Translate(x, y) dc.Scale(sx, sy) dc.Translate(-x, -y) } // Rotate updates the current matrix with a clockwise rotation. // Rotation occurs about the origin. Angle is specified in radians. func (dc *Context) Rotate(angle float64) { dc.matrix = dc.matrix.Rotate(angle) } // RotateAbout updates the current matrix with a clockwise rotation. // Rotation occurs about the specified point. Angle is specified in radians. func (dc *Context) RotateAbout(angle, x, y float64) { dc.Translate(x, y) dc.Rotate(angle) dc.Translate(-x, -y) } // Shear updates the current matrix with a shearing angle. // Shearing occurs about the origin. func (dc *Context) Shear(x, y float64) { dc.matrix = dc.matrix.Shear(x, y) } // ShearAbout updates the current matrix with a shearing angle. // Shearing occurs about the specified point. func (dc *Context) ShearAbout(sx, sy, x, y float64) { dc.Translate(x, y) dc.Shear(sx, sy) dc.Translate(-x, -y) } // TransformPoint multiplies the specified point by the current matrix, // returning a transformed position. func (dc *Context) TransformPoint(x, y float64) (tx, ty float64) { return dc.matrix.TransformPoint(x, y) } // InvertY flips the Y axis so that Y grows from bottom to top and Y=0 is at // the bottom of the image. func (dc *Context) InvertY() { dc.Translate(0, float64(dc.height)) dc.Scale(1, -1) } // Stack // Push saves the current state of the context for later retrieval. These // can be nested. func (dc *Context) Push() { x := *dc dc.stack = append(dc.stack, &x) } // Pop restores the last saved context state from the stack. func (dc *Context) Pop() { before := *dc s := dc.stack x, s := s[len(s)-1], s[:len(s)-1] *dc = *x dc.mask = before.mask dc.strokePath = before.strokePath dc.fillPath = before.fillPath dc.start = before.start dc.current = before.current dc.hasCurrent = before.hasCurrent }